DELOS

NETWORK OF EXCELLENCE ON DIGITAL LIBRARIES

Retrieval of 2D Images by Spatial Arrangement of Color Clusters

University of Florence (UNIFI-MICC), Italy

Spatial similarity in retrieval by content

- Retrieval by visual content relies on appearing features of spatial entities
 - shape, color, texture, semantics
- When multiple entities are considered, the model may also capture relational information
 - spatial relationships

- This improves perceptual effectiveness
- But, basically changes the complexity of match and the applicability of indexing schemes

Weighted walkthroughs between extended sets

Cartesian reference system 9 walkthroughs w_{ii} along primitive directions, connecting pixels in A and B Each walkthrough is weighted with an integral measure of the number of pixel pairs 0.3 0 0 to which it applies ww (A,B) 0.1 0 0 0.7 0.8 1

$$w_{ij}(A,B) = K_{ij} \int_{A} \int_{B} C_{i}(x_{b} - x_{a}) C_{j}(y_{b} - y_{a}) dx_{b} dy_{b} dx_{a} dy_{b}$$

Reduced set of weighted walkthroughs

- Weighted walkthroughs are simplified by considering only corner weights
 - evaluation of corner weights is as complex as a conventional representation based on centroids
 - avoids management of bounded rectangles requested by middle weights
 - neglects the central weight which is significant only when overlapping is considered

Properties

- Reflexive and invariant with respect to shifting and zooming
- Continuous with respect to changes in the image
- Compositional
 - the weight W(A, B₁UB₂) is derived by linear combination of W(A, B₁) and W(A, B₂)
 - circumvents the complexity of numerical integration

- The 4 corner have sum equal to 1 and can be replaced with 3 independent indexes
 - $W_H(A,B) = W_{1,1}(A,B) + W_{1,-1}(A,B)$ accounts for the degree by which A is on the left of B

•
$$W_V(A,B) = W_{-1,1}(A,B) + W_{1,1}(A,B)$$

accounts for the degree by which A is below of B

• $W_D(A,B) = W_{-1,-1}(A,B) + W_{1,1}(A,B)$ accounts for the degree by which *A* and *B* are diagonal

Distance measure

 Dissimilarity between spatial relationships is evaluated by convex composition of distances between homologous directional indexes

$$D(w,\overline{w}) = \alpha |w_H - \overline{w}_H| + \beta |w_V - \overline{w}_V| + \gamma |w_D - \overline{w}_D|$$
$$\alpha + \beta + \gamma = 1 \qquad \alpha, \beta, \gamma \ge 0$$

D is a metric and changes with continuity

Computing distances between graphs

- Comparison involves interpretation of the entities of a query on the entities of a description $\Gamma: Q \rightarrow D$
 - query specification <Q, a^q, s^q>
 - image description <D, a^d, s^d>
 - Interpretation Γ of Q on D $q_1 \neq q_2 \rightarrow \Gamma(q_1) \neq \Gamma(q_2)$

- Distance under interpretation $\Gamma: Q \rightarrow D$
 - convex combination of distance between associated entities and between their homologous relationships $\prod_{i=1}^{N_0} \sum_{i=1}^{N_0} \sum_{i=1}^$

$$\mu(\Gamma) = \lambda \mu_s(\Gamma) + (1 - \lambda) \mu_a(\Gamma)$$

$$\mu_{a}(\Gamma) = \sum_{k=1}^{N_{Q}} D_{a}(q_{k}, \Gamma(q_{k}))$$

$$\mu_{s}(\Gamma) = \sum_{k=1}^{N_{Q}} \sum_{h=1}^{k-1} D_{s}(\langle q_{k}, q_{h} \rangle, \langle \Gamma(q_{k}), \Gamma(q_{h}) \rangle)$$

The absolute distance is evaluated with the optimal interpretation

$$\mu = \min_{\Gamma: Q \to D} \left\{ \mu(\Gamma) \right\}$$

 The evaluation of a distance between two image models is an optimal error correcting (sub-)graph isomorphism problem

